coq-mathcomp-odd-order

The formal proof of the Feit-Thompson theorem. From mathcomp Require Import all_ssreflect all_fingroup all_solvable PFsection14. Check Feit_Thompson. : forall (gT : finGroupType) (G : {group gT}), odd #|G| -> solvable G From mathcomp Require Import all_ssreflect all_fingroup all_solvable stripped_odd_order_theorem. Check stripped_Odd_Order. : forall (T : Type) (mul : T -> T -> T) (one : T) (inv : T -> T) (G : T -> Type) (n : natural), group_axioms T mul one inv -> group T mul one inv G -> finite_of_order T G n -> odd n -> solvable_group T mul one inv G

opam install coq-mathcomp-odd-order.1.6.1
homepage
http://ssr.msr-inria.inria.fr/
license
CeCILL-B
bugs tracker
Mathematical Components <mathcomp-dev@sympa.inria.fr>
dependencies
coq-mathcomp-algebra = 1.6.1 & coq-mathcomp-character = 1.6.1 & coq-mathcomp-field = 1.6.1 & coq-mathcomp-fingroup = 1.6.1 & coq-mathcomp-solvable = 1.6.1 & coq-mathcomp-ssreflect = 1.6.1
source
https://github.com/math-comp/math-comp/archive/mathcomp-odd-order.1.6.1.tar.gz
package
https://github.com/coq/opam-coq-archive/tree/master/released/packages/coq-mathcomp-odd-order/coq-mathcomp-odd-order.1.6.1